Analysis of the Brachistochronic Motion of a Variable Mass Nonholonomic Mechanical System
نویسندگان
چکیده
The paper considers the brachistochronic motion of a variable mass nonholonomic mechanical system [3] in a horizontal plane, between two specified positions. Variable mass particles are interconnected by a lightweight mechanism of the ‘pitchfork’ type. The law of the time-rate of mass variation of the particles, as well as relative velocities of the expelled particles, as a function of time, are known. Differential equations of motion, where the reactions of nonholonomic constraints and control forces figure, are created based on the general theorems of dynamics of a variable mass mechanical system [5]. The formulated brachistochrone problem, with adequately chosen quantities of state, is solved, in this case, as the simplest task of optimal control by applying Pontryagin’s maximum principle [1]. A corresponding two-point boundary value problem (TPBVP) of the system of ordinary nonlinear differential equations is obtained, which, in a general case, has to be numerically solved [2]. On the basis of thus obtained brachistochronic motion, the active control forces, along with the reactions of nonholonomic constraints, are determined. The analysis of the brachistochronic motion for different values of the initial position of a variable mass particle B is presented. Also, the interval of values of the initial position of a variable mass particle B, for which there are the TPBVP solutions, is determined.
منابع مشابه
Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کاملMechanical behaviour of motion for the two-dimensional monolayer system
In this paper we study the dynamics of the 2D-motion of a particle of monolayer. First we consider the usual physical time component and the plan manifold R2, having the polar coordinates. Then a geometric approach to nonholonomic constrained mechanical systems is applied to a problem from the two dimensional geometric dynamics of the Langmuir-Blodgett monolayer. We consider a constraint sub...
متن کاملVibration and Bifurcation Analysis of a Nonlinear Damped Mass Grounded System
In this paper, vibrations and bifurcation of a damped system consists of a mass grounded by linear and nonlinear springs and a nonlinear damper is studied. Nonlinear equation of motion is derived using Newton’s equations. Approximate analytical solutions are obtained using multiple time scales (MTS) method. For free vibration, the approximate analytical results are compared with the numerical i...
متن کاملDynamic Analysis of Moving Cables with Variable Tension and Variable Speed
Dynamic Analysis of an axially moving cable with time dependent tension and velocity isstudied in this paper. Tension force and the moving speed are assumed to be harmonic.It is found that there exists a specific value of speed in which natural frequency of the system approacheszero. This specific speed for such a critical condition is called critical speed and it will be proved thatincreasing ...
متن کاملVibration Analysis of Rotating Shaft with Loose Disk
In this paper energy method is used to calculate rotor response with loose rotating disk on it. System equation of motion is obtained based on energy method and Lagrange equation. Mathematical modeling of loose disk in a rotor bearing system has resulted in terms similar to unbalance and gyroscopic effect in the system equation of motion. The effect of loose disk axial position and orthotropic ...
متن کامل